
L2OVX: An On-demand VPLS Service with

Software-Defined Networks

Jen-Wei Hu∗,†, Chu-Sing Yang† and Te-Lung Liu∗

∗National Center for High-performance Computing, NARLabs, Tainan, Taiwan

Email: {hujw, tlliu}@narlabs.org.tw
†Institute of Computer and Communication Engineering, NCKU, Tainan, Taiwan

Email: csyang@mail.ee.ncku.edu

Abstract—Virtual Private LAN Service (VPLS) is a widely used
network technology which connects geographically distributed
customer sites as a local area network. However, the process
of provisioning a new VPLS circuit is complicated because
service provider has to check device configurations one by one.
Therefore, it is difficult to provide the service on demand. Open-
Flow, the most notable protocol in Software Defined Networking
(SDN), manage the network devices via a well-defined set of
instructions and exposes the handling capability of flows to a
centralized controller. By this logically centralized programmatic
model, we have a consistent and convenient way to dynamically
allocate an end-to-end path for a VPLS service. In this paper, we
present a system L2OVX which leverages OpenVirteX, a network
virtualization platform, to realize the VPLS service on-demand
in SDN. This solution provides layer 2 translation to achieve
virtualization process with line-rate performance, and enables the
load balance function to improve the transfer bandwidth among
tenants. The result of evaluation shows L2OVX is competitive
with OpenVirteX according to the TCP throughput on software-
based OpenFlow switches and moreover, supports most hardware
OpenFlow-enabled switches to provide the line-rate throughput.
Furthermore, for scalability, the number of flow entries for one
tenant remains constant in L2OVX while grows exponentially in
OpenVirteX.

Index Terms—Software-defined networking; network virtual-
ization; VPLS; OpenFlow

I. INTRODUCTION

With the growth of scale or business, there are several

scenarios that require multiple distributed sites to work to-

gether and the demand for cross-site data-communication

arises. For example, an institute or university with two or

more campus areas; a data center that needs to interconnect

the infrastructure resources (e.g., computing nodes and storage

nodes) among different sites. The primary motivation behind

Virtual Private LAN Service (VPLS) is to provide connectivity

between geographically dispersed customer sites across MANs

or WANs, as if they were connected using a local area network

[1].

VPLS is an importance service of TaiWan Advanced Re-

search and Education Network (TWAREN) network. Currently,

there are more than 30 projects or institutes subscribed to this

service. TWAREN uses line-rate interfaces on edge devices

to provide VPLS services. However, the network interface is

not cheap and vendor-dependent. Moreover, there is no single

unifying abstraction that can be leveraged to configure the

network devices. As a consequence, provisioning a network

service can take months [2]. Therefore, there are challenges

to design on-demand reliable services with efficient configu-

ration, flexible deployment, and low cost. Recently, Software

Defined Networking (SDN) achieves these requirements and

provides unified interfaces to network devices that is free from

vendor lock-in.

The concept of SDN is based on the idea of separating

the control plane from the data plane of network equipments

(e.g., switches and routers). Hence, the control and data planes

are decoupled, network intelligence and state are logically

centralized, and the underlying network infrastructure is ab-

stracted from applications. The control plane is implemented

in software that runs on separate servers while the data

plane might be realized in software or networking hardware.

OpenFlow [3] is the most popular protocol of SDN that

enables networks by giving a remote controller the access to

modify the behaviour of network switches through a well-

defined forwarding instruction set. Therefore, applying SDN

concepts, we can centralize the control of these devices and

easily create a path between end-points on demand for a VPLS

service.

In this article, we implement a system based on OpenVirteX

[4], call L2OVX, which provides VPLS-like service in SDN.

Our main contributions are as follows:

1) L2OVX provides VPLS-like functions with lower cost

and on-demand configuration to improve the efficiency.

2) With modifications to layer 2 fields, L2OVX is compat-

ible with hardware of OpenFlow switches for line-rate

performance as compared to OpenVirteX which requires

layer 3 modifications.

3) L2OVX enables link load balancing over multiple paths.

The remainder of this paper is organized as follows. In

Section II, we discuss related works on the network virtualiza-

tion and examine two novel platforms which implement this

concept in SDN. In Section III, we present the architecture

of L2OVX and its components for solving the challenges

encountered in previous network virtualization platforms. In

Section IV, we evaluate our system in terms of the throughput

for a TCP connection, the impact with the number of services

increases, and link load sharing. Finally, we conclude the paper

and present future works in Section V.

II. RELATED WORK

Network Virtualization [5], [6] provides the concept of

a virtual network which is decoupled from the underlying

physical infrastructure. With this technology, multiple iso-

lated virtual networks with different addressing and forward-

ing mechanisms can share the same physical infrastructure.

FlowVisor [7] enables multiple virtual networks by slicing

network resources and delegating the control of each slice to

a single OpenFlow controller. It acts as a transparent proxy

between OpenFlow controllers and OpenFlow switches. Slices

can be defined by any combination of the fields from layer

1 to layer 4 (e.g., switch ports, MAC address, IP address,

and TCP/UDP port). FlowVisor guarantees isolation among all

slices in its controlled scope if non-overlapping flow spaces

exist. This arrangement allows multiple OpenFlow controllers

to run virtual networks on the same physical infrastructure

while ensuring that each controller touches only the switches

and resources assigned to it. However, using these slices need

to follow the pre-defined flow spaces that leads to FlowVisor

had several limitations for tenants to develop their upper

application on controllers. Moreover, the slice manager has

to manually configure each of flow spaces through a full or

a subset of network equipments in physical topology. Hence,

configuration complexity increases exponentially with number

of tenants and controlled equipment.

FlowVisor realizes the network isolation but lacks of having

full configurable topologies and on-demand creation, destroy,

and other maintenances on virtual networks. Therefore, au-

thors in [4] propose another network virtualization platform,

called OpenVirteX, which can i) provide address virtualization

to keep tenant traffic separated, ii) provide topology virtual-

ization to enable tenants to specify their topology. Similar to

FlowVisor, they present OpenVirteX as a network hypervisor

that enables operators to provide network virtualization to

their customers. By exposing OpenFlow networks, OpenVir-

teX allows tenants to use their own NOS to control the

network resources corresponding to their virtual network. In

other words, OpenVirteX creates multiple virtual software

defined networks out of one. Unlike FlowVisor, which simply

slices the entire flow space amongst the tenants, OpenVirteX

provides each tenant with a fully virtualized network featuring

a tenant specified topology and a full header space.

However, in order to achieve these features, the edge

switches in OpenVirteX need to enable layer 3 (e.g., IP ad-

dress) modification in OpenFlow action field. Currently, most

OpenFlow-enabled network equipment in the market does not

support this feature or implements it by software. This leads

to poor performance in processing the frames, and also limits

the use of OpenVirteX for realizing network virtualization in

physical network infrastructure. Moreover, if a tenant adds new

devices in its virtual network, OpenVirteX needs to manually

bind these devices’ MAC addresses to specific ports for the

correctness in address translation. This leads the complexity

to configure and maintain the virtual networks.

��������

�		

�����
��

�� �� �� �� �� �� �� ��

�� ��� �� �� �� ��� �� ���

����	������	�����

�����

����������

�����

������
�����	�

�����

Northbound Interface

Southbound Interface

��������

�������� 	�
���

�������

��

������	
��������

�	���������

�� �����	��
�����	���������

�� �������	���	�����������	

���������	�������
�����

��������������������

��������
���	�

 ���!

�	"	
	��

#���	$���

 �#!

%$���

&��
��

 %&!

�������
'������
�

����	���%(��"�����

Fig. 1: The architecture of L2OVX approach

III. THE L2OVX APPROACH

Currently, the network virtualization is considered a fun-

damental enabler in several areas, such as cloud computing,

Network as a Service (NaaS) [8], and experimental testbeds

[9]. We design the architecture of L2OVX as a three-layered

model, which is depicted in Figure 1, to map these three basic

components, called Network Resources layer, Virtualization

layer, and Management layer. We show an overall view of

L2OVX by summarizing the functionalities of these layers in

this section.

A. Network Resources Layer

This layer contains the number of available network re-

sources which are shared to tenants according to different

requests. The only requirement of these network resources is

need to support OpenFlow protocol. In general, we can divide

the network resources into two types: OpenFlow software

switch (e.g., virtual switch) and OpenFlow hardware switch.

Software switch is commonly applied in cloud computing to

virtualize the underlying network. These switches run on the

hypervisor and provide network isolation and communication

among virtual machines. Popular open source examples which

support OpenFlow protocol are Open vSwitch [10], Lagopus

[11]. The other type is hardware-based OpenFlow switch.

Currently, more and more network manufactures, such as

Brocade, Edge-core, HP, Pica8, and etc., implement OpenFlow

protocol in their equipment. For virtual switches, we do

not consider the hardware acceleration in the flow matching

process. The reason is all flows are handled by the server.

As a result, the performance is dependent on the CPU power.

However, hardware-based switches rely on TCAM to process

packets instead of CPU. Switches of this type present two

known issues in regard to the number of flow entries and line-

speed modification.

1) Flow Entries Limitation: Because every hardware-based

switch has a finite amount of TCAM, it can only support a

limited number of flow entries. The size of the flow table,

which stores these entries, is from 1500 to 4000 among

TABLE I: A Comparison of supported actions in OpenFlow

switches.

Brocade Edge Core HP Pica8
6610 AS4600 2920/5400 3297

L1 (Switch Port) Yes Yes Yes Yes
L2 (MAC address) Yes Yes Yes Yes
L2 (VLAN) Yes Yes Yes Yes
L3 (IP address) No No Yes(S/W)a Yes(S/W)a

a S/W: The supported action is implemented by software.

������
����	�
�����

�	���
���	�
���������

����	�����	�

����

���

����

����

����

����

��
����������� ����
�����������

NOS

L2OVX

Fig. 2: The mapping between physical and virtual compon-

ments in L2OVX.

different vendor switches. Although some switches have the

ability to support more flows if the inserted flow entries only

required to match Layer 2 fields, the flow table is a very limited

resource that should be considered when designing our system.

2) Support for the Match Fields and the Actions in Open-

Flow: OpenFlow flow entries contains two important com-

ponents: match fields and actions. Each incoming packet is

matched against a set of rules (e.g., match fields), and the

action list (e.g., actions) associated with the matching rule

is executed. Most current OpenFlow switches have already

supported to process match fields (e.g., 12-tuple in OpenFlow

1.0 and more than 30-tuple in OpenFlow 1.3) in the flow

entries by hardware. But for actions, only few are supported

or implemented by software. In our verification of OpenFlow-

enabled switches from various vendors, most of them only

support a number of actions which allow the modification

of layer 1 and layer 2 field in packet headers, as shown in

Table I. This means that our solution should consider not only

efficiently using limited flow table but also separating different

tenants by using layer 2 mechanisms.

B. Virtualization Layer

The network virtualization allows the same physical re-

sources to be shared by various services at the same time.

Although the current OpenVirteX works properly in software-

based OpenFlow switch, it does not fit in most OpenFlow-

enabled hardware switches due to its layer 3 dependent transla-

tion mechanism. Therefore, by modifying several components

in OpenVirteX, we propose the core of L2OVX - Virtualization

Layer, which is composed of three major parts: Topology

Discovery (TD), Event Handler (EH), and L2 Translation

(L2T).

1) Topology Discovery (TD): The TD is responsible for col-

lecting all information from the underlying network resources.

These information is including managed devices, all ports of

each device, and links between devices. The first two parts can

be retrieved via the initial OpenFlow protocol handshake. Each

OpenFlow switch initiates a connection to the controller in the

beginning, thus in this way we know all controlled devices.

Then, the controller sends a OFPT FEATURES REQUEST

message to each connected switch, asking the ability and cur-

rent status including active ports. Finally, the links information

learned from received LLDP packets which is generated pe-

riodically by the controller. Becuase OpenVirteX is a specific

controller, it has already implemented this service. Therefore,

our TD leverages the topology discovery in OpenVirteX to

discover not only the software OpenFlow switch but also

hardware one.

2) Event Handler (EH): Because virtualization layer acts

as a transparent layer, it should ensure multiple tenants can

transmit any type of packet (e.g., ARP, LLDP, IP, ICMP,

TCP, and etc.) on their virtual network with no restriction. As

described above, most of OpenFlow controllers use LLDP to

discover links information among the underlying devices. But

in OpenVirteX, it ignores all LLDP packets from controllers

of its tenants. Currently, it only handles the LLDP packet

generated by itself. If tenants would like to deploy OpenFlow-

enable devices in their virtual networks, they cannot properly

find out the topology of controlled OpenFlow-enable devices.

For solving this problem, we design a process to handle

it. When L2OVX receives OpenFlow message containing a

LLDP information in PACKET IN event, the process checks

if this LLDP is generated by L2OVX, then it will update

the topology. Otherwise, we forward these packets to the

ports belonging to specific tenants. In this way, our system

separates different LLDP packets and assures tenants can

properly discover the network topology.

3) L2 Translation (L2T): The L2T is the core component

in our L2OVX architecture. It is responsible for guaranteeing

the isolation among all tenants to protect each one from

interference caused by the others. As stated in [9], using

a common layer to define a flow entry can simplify and

ensure the isolation among tenants. In addition, we previously

mentioned that most OpenFlow-enabled network devices only

support layer 2 actions modification by hardware, as shown

in Table I. As a result, our L2T chooses layer 2 (e.g., VLAN,

source and destination MAC address) as the common layer to

separate its tenants. In this way, L2T not only simplifies the

isolation process, but also achieves line-rate performance for

forwarding tenants’ packets.

There are two core processes, the virtualization and the de-

vertualization, in L2T. The former is the traffic from physical

network to virtual one and the devertualization is defined the

reverse direction of the virtualization, as illustrated in Figure 2.

We will discuss in more detail in the following paragraph.

4) Virtualization and Devirtualization: First, we present

the virtualization algorithm, as shown in Algorithm 1. This

procedure dispatches the incoming packet to proper tenant. In

OpenVirteX, it has to bind the MAC address of each device

to one specific port. As a result, OpenVirteX requires an extra

effort to update the mapping if a user adds or removes devices.

Furthermore, the number of flow entries is increased with

the connections among tenants’ devices. L2OVX identifies

the tenant by the switch edge ports instead of the source

MAC address. In this way, L2OVX is independent of the

devices connected on the physical switch port. Compared to

OpenVirteX, our system reduces the number of flow entries

and increases the scalability of user size.

Algorithm 1 Algorithm of Virtualizing a Packet to the Specific

Tenant

1: procedure VIRTUALIZE(psw,inport,data)

2: tid = fetchTenant(inport);
3: if tid 6= ∅ then

4: vsw = fetchV irtualSwitch(psw, tid);
5: vp = fetchV irtualPort(inport, tid);
6: sendPacket(vsw, vp, data);
7: end if

8: end procedure

The procedure virtualize(psw,inport,data) is executed when

an incoming packet appears on the port (e.g., inport) of switch

psw. Line 2 retrieves the tenant by passing the parameter

inport. According to the tenant, we can find the virtual switch

and virtual port in Line 4 and Line 5 respectively. Finally, Line

6 sends the incoming packet data to the port vp on the virtual

switch vsw.

Next, we describe the devirtualization process of L2OVX,

as shown in Algorithm 2. In physical switches, each edge

port belongs to exact one user while the core ports are shared

among the users of L2OVX. When a user sends a packet to the

core ports, L2OVX chooses a unique identifier for the user and

attaches it on this packet to achieve the isolation in physical

switches. L2OVX makes use of VLAN id field as this identifier

because most OpenFlow-enable hardware devices support only

layer 2 modification in OpenFlow action, as shown in Table I.

It is important to note that this modification is performed in

L2OVX and does not expose to the service users. That means

there is no configuration overhead in user side.

By these two algorithms, we can properly separate different

VPLS services by VLAN. That means each service is isolate

with the others. Although the maximum number of using 4096

VLANs, it may be the limitation of our system. However, as

described in [9], the major limitation factor is the number of

flow entries supported by the OpenFlow devices. For example,

in Pica8, the flow number for 1Gbps-interface switch is 2048

and 10Gbps-interface switch is 1024. Furthermore, we will

replace new OpenFlow library which supports OpenFlow 1.3

in the future. At that time, we can use Q-in-Q encapsulation

to extend the number of VLAN.

5) Link Load Balance: For improving the link utilization

and load balancing tenants’ traffic, we implement a mechanism

to achieve this feature. As stated in Line 3 of Algorithm 2,

L2OVX allocates paths for a tenant. Assume two or more ten-

Algorithm 2 Algorithm of Devirtualizing a Packet to the

OpenFlow Switch

1: procedure DEVIRTUALIZE(vsw, vmatch, vactions)

2: tid = getT enant(vsw)
3: paths = getAllPath(vmatch.inport, vactions.ports)
4: stp = getShortestPath(paths)
5: for (s, t) ∈ stp do

6: psws = fetchPhysicalSwitch(s)
7: if (s, t) is the first link of stp then

8: match = [in port : s]
9: actions = [set vlan : tid, output : t]

10: end if

11: if (s, t) is a intermediate link of stp then

12: match = [in port : s, vlan id : tid]
13: actions = [output : t]
14: end if

15: if (s, t) is the last link of stp then

16: match = [in port : s]
17: actions = [strip vlan, output : t]
18: end if

19: installF low(psws,match, actions)
20: end for

21: updateLink(stp, assign)
22: end procedure

ants request VPLS services from the same two edge switches,

they will have the same primary path. It causes poor data

transfer performance because tenants may use the specific

links at the same time. Therefore, we add an attribute of a

link, called the utilization, which represents the number of

primary paths which contain it. The value will be increased

when a primary path containing this link is created by L2OVX.

When one primary path is released, we decrease the value of

all links in this path. In this way, L2OVX is able to simply

and efficiently load sharing the traffic among tenants.

C. Management Layer

The management layer is composed of two modules: In-

stances Pool and Scheduler. Instances Pool maintains a num-

ber of available instances, which are used to serve the VPLS

service requests from tenants. We create a image in which an

Linux OS and a OpenFlow controller are installed. What kinds

of controllers (e.g., NOX [12], Ryu [13], and etc.) running

on this image are independent, but each has to match two

requirements, supporting OpenFlow 1.0 and enabling switch

application. Based on this image, the instance is created and

automatically assigned a private and fixed IP address. This IP

address is permanently associated with the instance until the

instance is terminated.

Scheduler is a standalone and subscribing service in our

architecture. It periodically executes all subscribed tasks ac-

cording to their configuration. Currently, we have registered

two tasks in Scheduler. The first task that is to create instances

when finding the number of available instances is not enough

in the pool. We define two parameters, one is an available

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

����������

	�
��������������������

���������������������

�������������
� ������!""

�����������#�������!!�"

$�%�����$&���'(����% �)�")"

Fig. 3: The experiment topology.

threshold T and the other is a number of creating instances N.

If the number of available instances is lower than T, Scheduler

will automatically create instances according to N for use in

the future. The second task in Scheduler is responsible to

check if L2OVX contains any expiring VPLS services. This

information will be provided to service manager, for notifying

related tenants or doing optional processes including stopping

the VPLS service automatically.

IV. EVALUATION

For evaluating L2OVX, we emulate physical network con-

nection of TWAREN as our experiment topology. As illus-

trated in Figure 3, there are four core nodes and twelve

regional network centers. In our network laboratory, we have

six OpenFlow-enable switches including two Pica8 3297

switches, two Edge-core AS4600 switches, and two Brocade

6610 switches. We choose four of them to be the core nodes,

and the other two switches combines five servers installing

Open vSwitch to represent as the regional network centers. In

this way, this experiment environment is constructed by both

virtual and physical network.

We present following experiments in the subsections below

to evaluate our solution: the comparison between OpenVirteX

and L2OVX in terms of the throughput for a TCP session

on software-based and hardware-based OpenFlow switches in

Section IV-A; the throughput with link load balancing function

enabled in Section IV-B; finally, the number of flow entries

needed as the number of services or devices increases, in

Section IV-C.

A. The Throughput for a Single TCP Session

In this subsection, we use the Iperf tool to show the com-

parison of TCP throughput between OpenVirteX and L2OVX.

As described above, OpenVirteX achieves the isolation of

tenants by using layer 3 translation, which is only implemented

in software-based OpenFlow switch, such as Open vSwitch.

Therefore, in the first experiment we use Mininet, developed

based on Open vSwitch, to simulate the TWAREN network

topology and compare these two systems. The TCP throughput

is measured from host H1 on node A to host H2 on node J

(Figure 3). The experiment result is shown as Figure 4a. The

average throughputs between hosts are 617 Mbps over 60s

in OpenVirteX and 621 Mbps in L2OVX. This result shows

that there is no difference between OpenVirteX and L2OVX

in virtual network environment.

In the second experiment, we measure the TCP throughput

in physical network environment. Most physical OpenFlow-

enable switch currently support layer 2 modification but not

layer 3 in OpenFlow action, so we only show the performance

result of L2OVX in Figure 4a. With regard to the second

experiments, the physical switch outperforms the software-

based switch in the TCP throughput. Therefore, for both virtual

and physical OpenFlow devices, L2OVX is able to support and

has a outstanding performance.

B. Services Load Sharing among Multiple Paths

As described in Section III-B3, efficiently distributing in-

coming network traffic across links can improve data transfer

performance among tenants. In this experiment, we show the

comparison of TCP throughput between L2OVX with and

without load balancing feature. There are two tenants in the

scenario, and each of them requests a VPLS service between

node 1 and node 4. If the load balancing feature in L2OVX is

disabled, both tenants traverse along the same primary path

(1,4) because it has the minimum node hops. However, if

L2OVX with load balancing feature enabled, path (1,4) is

still the primary path of tenant1 but tenant2’s primary path is

replaced by (1,2)-(2,3)-(3,4). As shown in Figure 4b, L2OVX

with load balancing feature delivers almost double throughput

in TCP session than disabled the feature in L2OVX. This

is because tenant1 and tenant2 transmit data with line-rate

performances at the same time along disjoint paths.

C. Reduce the Number of Flow Entries

Next, we consider the scalability impacts on OpenVirteX

and L2OVX when the number of services increases. In general,

a TWAREN user requests a VPLS service that connects two

geographically dispersed sites. In this experiment, we assume

each user owns two dedicated edge-ports for attaching end-

hosts. There are two different equations which compute the

number of flow entries in OpenVirteX and L2OVX separately.

N = t× (
m

2
)2 (1)

For OpenVirteX, the number of flow entries, denoted as

N , which is dependent on the two parameters: t and m.

The value of t is the number of requested services in the

system, which is equal to the number of tenants. And the

value of m, is the number of devices used in this service.

Without loss of generality, we make an equal division of m,

that is m

2
, and let it be the number of devices in each site.

Hence, the maximum number of flow entries N is computed

as shown in Equation (1). On one hand, the maximum number

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Sec)

TCP throughput of L2OVX in physical network
TCP throughput of L2OVX in virtual network

TCP throughput of OpenVirtex in virtual network

(a)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Without load balancing function in L2OVX
With load balancing function in L2OVX

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Without load balancing function in L2OVX
With load balancing function in L2OVX

(b)

Fig. 4: The Comparison between OpenVirteX and L2OVX in the TCP Throughput.

of flow entries N in OpenVirteX grows polynomially when the

number of devices m increases. On the other hand, we note

that the number of tenants t is another effect factor for the

result, which indicates the rate of flow entry grows fast with

the number of serviced tenants increases.

N ′ = t (2)

Equation (2) is defined to compute the number of flow

entries in L2OVX. It is similar to Equation (1) but the number

of devices m can be ignored because L2OVX is a port-

based virtualization system while OpenVirteX is based on

end-hosts. Therefore, the number of flow entries in L2OVX

remains constant regardless of an increase with the number of

connected end-hosts.

V. CONCLUSION

In this paper, we presented a virtualization system L2OVX

which provides a VPLS-like service with lower cost with SDN

framework and supports on-demand configuration to improve

the efficiency. The proposed solution is developed based on

OpenVirteX but the main difference is L2OVX uses layer 2 in-

stead of layer 3 modification in the virtualization process. The

benefit of using L2OVX derives from the fact that is highly

compatible with most OpenFlow-enabled hardware switches to

achieve the wire-rate performance when transmitting the data.

Furthermore, the number of installed flow entries of L2OVX

is less than OpenVirteX. In addition, the proposed solution

fixes the problem in OpenVirteX which does not properly

display the OpenFlow devices topology in each tenant’s virtual

network, and provides a management layer in which routine

tasks including checking the expired services and maintaining

the service instances are invoked by Scheduler. Moreover,

L2OVX enables the load balance function for each VPLS

service to improve the transfer bandwidth among tenants.

For the future work, we will integrate L2OVX with Open-

Flow 1.3 to provide more features available in the Open-

Flow protocol and extend the number of VPLS services in

TWAREN. Besides, we would like to propose more real-time

and fine-grained load balancing mechanism to improve the link

utilization and transmission bandwidth.

REFERENCES

[1] M. Lasserre and V. Kompella, ”Virtual Private LAN Service (VPLS)
Using Label Distribution Protocol (LDP) Signaling,” Internet En-
gineering Task Force, RFC 4762, Jan. 2007. [Online]. Available:
https://tools.ietf.org/rfc/rfc4762.txt

[2] D. Kreutz et al., ”Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[3] N. McKeown et al., ”OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38, no.
2, pp. 6974, 2008.

[4] A. Al-Shabibi et al., ” OpenVirteX: make your virtual SDNs pro-
grammable,” in Proc. 3rd ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networking (HotSDN), 2014.
[5] N. Chowdhury and R. Boutaba, ”A survey of network virtualization,”

Computer Networks, vol. 54, no. 5, pp. 862876, 2010.
[6] G. Schaffrath, C. Werle, and P. Papadimitriou, ”Network virtualization

architecture: proposal and initial prototype,” in Proc. 1st ACM SIGCOMM

Workshop on Virtualized Infastructure Systems and Architectures (VISA),
2009, pp. 63-72.

[7] R. Sherwood et al., ”FlowVisor: A Network Virtualization Layer,” Tech-

nology Report, 2009.
[8] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, ”NaaS: network-as-

a-service in the cloud,” in Proc. 2nd USENIX Conference on Hot Topics

in Management of Internet, Cloud, and Enterprise Networks and Services

(Hot-ICE), 2012.
[9] J. Matias, A. Mendiola, N. Toledo, B. Tornero, and E. Jacob, ”The

EHU-OEF: An OpenFlow-based Layer-2 experimental facility,” Computer

Networks, vol. 63, pp. 101-127, 2014.
[10] Open vSwitch, 2014. [Online]. Available: http://openvswitch.org/
[11] Nippon Telegraph and Telephone Corporation, ”Lagopus switch: a high-

performance software OpenFlow 1.3 switch,” 2015. [Online]. Available:
https://lagopus.github.io/

[12] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, ”Applying NOX
to the datacenter,” in Proc. 8th ACM Workshop on Hot Topics in Networks

(HotNets-VIII), 2009.
[13] Nippon Telegraph and Telephone Corporation, ”Ryu SDN Framework,”

2015. [Online]. Available: http://osrg.github.io/ryu/

